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Time recurrent behaviour in the nonlinear Schrodinger 
equation 

G Rowlands 
Department of Physics, University of Warwick, Coventry, CV4 7AL, England 

Received 29 October 1979, in final form 28 January 1980 

Abstract. An analytic treatment of the time behaviour of spatially periodic solutions of the 
nonlinear Schrodinger equation is given. This predicts periodic time evolution in qualitative 
agreement with recent numerical results. 

1. Introduction 

In a recent paper, Yuen and Ferguson (1978) studied, numerically, the time evolution 
of solutions of the nonlinear Schrodinger equation subject to spatial periodic boundary 
conditions. Their results showed very interesting time recurrence phenomena. In 
particular, for the case which they label as simple, the time evolution is periodic. It is the 
purpose of this paper to show how this periodicity arises analytically and to obtain an 
estimate for the period. 

2. Basic method 

In the notation of Yuen and Ferguson the nonlinear Schrodinger equation takes the 
form 

iaA/at-ka2A/ax2-iIA12A = O .  

It is convenient to write A = $ ( x ,  t )  exp[-(i/2)ait], in which case 

i a$/at + i a i $ - ~ a 2 $ / a x 2 - ~ I $ 1 2 ~  = 0. (2.1) 
This equation is to be solved subject to periodic boundary conditions so we write 

and restrict attention to symmetric solutions in accord with the numerical simulations. 

(2.3) 
The ‘simple case’, as considered by Yuen and Ferguson, corresponds to the situation 
where A: > 0 but all other A,, are purely imaginary, i.e. there is only one unstable mode. 

In such a case one could imagine that in the full nonlinear case the n = 1 mode would 
act as a driver to the other modes such that these modes follow the time evolution of 41. 

A linearised analysis of (2.1) shows that 4,, = a. and 4,, = a exp(A,,t) where 
1 2 2  A = gn ko(a: - n2k;/8). 
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Yuen and Ferguson in fact point out that their numerical results show that the n # 1 
modes appear phase locked to the n = 1 mode. The analysis given in this paper is based 
on this observation. This concept of phase locking or 'enslaving' adiabatically has been 
discussed in detail in other branches of science (see for example Haken (1977), 
particularly ch 7). 

Mathematically one proceeds as follows. If $ ( x ,  t), as given by (2.2), is substituted 
into (2.1) one obtains an infinite set of coupled equations of the form 

where F is a nonlinear function of the I$,,. Formally these may be solved to give 

d4nldt + A n d ,  = F n ( 4 m ) y  (2.4) 

4 n  = exp(-A,t) I ' F n ( 4 m )  exp(Ant') dt'. 

One now makes the basic assumption that the time evolution of the problem proceeds 
on a timescale characterised by l / A l .  If we demand that A 1  << lAnl, then Fn(q5m) varies 
slowly with time compared to exp(A,t) and may be taken outside the integral to give, for 
n > 1, 

4 n  = = F n ( 4 m ) / A n -  (2.5) 
This is equivalent to neglecting the time derivative of 4,, in equation (2.4). For the n = 0 
mode the time derivative must be kept since A o =  0. In principle equations (2.5) may be 
solved and all the &, n > 1, expressed in terms of q50 and q51. These values are then 
substituted into equation (2.4) for n = 0, n = 1 to give two coupled ordinary nonlinear 
differential equations for 4o and q51. 

An alternative method is to proceed as follows. The approximation which led to 
(2.5) is seen to be equivalent to solving the equation 

1 8 %  1 2 d4o d 4 i  - ~ - ~ a o $ + ~ l $ / 2 $  =i-+i-cos(kox) 
8 ax dt dt  

subject to the condition that $ is periodic with period 27r/ko. This is equivalent to 
solving the ordinary differential equation 

(2.6) 2 1 2  d24e/dx -2aO4e+;/$eI24e= 771 + 772 cos(kox), 

where 771 and 772 are to be treated as constants, and then imposing the conditions 

and 

(2.7) 

Equations (2.7) and (2.8) constitute two coupled ordinary nonlinear differential equa- 
tions for q1 and 772, and describe the time evolution of the system. The time evolution of 
the amplitude of the higher modes, &(t), is readily obtained by decomposing $e into its 
Fourier modes, the time dependence being through that of do  and d1 only. 

Unfortunately it has not been possible to obtain an exact solution to (2.6), and hence 
the forms for the equations for 71 and 772 remain unknown. However in the limit as 
A 1 +. 0 it is possible to solve (2.6) by expansion and subsequently obtain approximate 
equations for v1 and 772. This is carried out in the next section. 
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3. Approximate time-dependent equations 

For A small, the growth rate is small and one expects the nonlinear effects also to be 
small. Thus we consider the solution of (2.6) in this weakly nonlinear case by formally 
expanding $e as a power series, 

2 
$ e = a o + E $ l + E  $'+. . . , 

and treating 77' = O ( E )  and v1 of higher order. In this way one generates a hierarchy of 
equations of the general form 

id2$,/dx2+$ao($, +$:) = S ,  (3.1) 

where S,  depends on 4, with m < n and possibly on v1 and v2. In particular 
S1 = v2 cos(kox), so writing $, = A cos(kox) one finds 

(3.2) A = ( 2 / 0 ) ( ~ 2  - Pv2X) 
where CY = a i  - ki/4, p = a i  and D = a' -p ' .  

If we now treat as being of higher order than E' then 

S2 = -faoA(A +2A")(1 +COS 2kox). 

From (3.1) one obtains 

d2($2- $;)/dX' = - f ~ , ( l  +COS 2ko~)[A'(A")~], 

which when integrated gives rise to a non-periodic variation with x .  Such a solution is 
not allowed and can be avoided by considering v1 to be of order E' and using this 
freedom to remove this secular behaviour. Thus we choose 

v1 - 7; = aao[A2 - (A")']. 

It is then found that 

$2 = B + F cos(2kox) 

where 

(77 + v x )  [A2+(Ax)'+4AAX] B=-- 
2 a i  8ao 

and 

a. [A2 - (A")'] [A' + (A")'+ 4AA"] - 
F=-( 4 k: 2a:-k: 

To next order 
1 2 "  

S3 = - a d $ l $ z + $ d ' ;  +$I$$)-T$I$I, 

and this expression contains terms proportional to cos(kox) and cos(3kox). We are only 
interested in the terms proportional to cos(kox) and we find, writing $3= 

H cos(kox) + terms proportional to cos(3kox), that 

H = (2/D)(aT3-pT;) 

where 

T3 = -[aoB(2A +A")  + iao(AF +A"F  +AF")  +$A'A"]. 
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Thus to this order we may write 4, = (a0 + B )  + (A + H )  cos(k0x) +harmonics, in 
which case (2.7) reduces to 

q 1  = i dB/dt (3 .3)  

whilst (2 .8 )  reduces to 

q2 = i d(A + H)/dt. (3 .4)  

We notice from the definition of B that it is real and hence, from above, ql = -771 and 

771 = Quo[AZ - (A")']. 

Thus we see that the time dependence of 71, and hence 40, is given algebraically in 
terms of 41, and thus even 40 is phase locked to the time dependence of d1. Equation 
(3 .3 )  is now redundant and is in fact equivalent to the linearised version of (3 .4 ) .  

Equations (3 .2)  and (3 .4 )  now constitute a system of equations for the time 
evaluation of 772 or A.  It is convenient to express these equations in terms of 
X = (A +A")/2 and Y = -i(A - A " ) / 2 ,  in which case we find that 

where 

and 

d 
(ff +PIX = - 2 z { Y [ 1  + g ( X 2 ,  Y2) ] } ,  

d 
dt 

(a -P)Y = 2 - { X [ 1  + h ( X Z ,  Y')]}, 

( 3 . 5 )  

(3 .6 )  

(ff + P )  4 2 k i ( 2 ~  - k z) 
Since we are primarily interested in situations where A 1  is small, we may put 

k; = aE(Al = 0) in the above expressions for g and h except in the prefactor l / ( a  + P ) .  
This gives 

'=-( 9 x 2 - 8 y 2 )  24 

and 

- 1 ( 3 ( 8 X 2 +  Y)') 
(ff + P )  8 

Equations (3 .5)  and (3 .6 )  may be put into a more transparent form by introducing 
ff = X [  1 + h (X, Y ) ]  which, since we have considered h to be small, may be expressed as 
X = g[l - h (x, p ) ] .  Using this transformation, and replacing by xa0 and finally 
dropping the bars gives the equations 
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and 

-=- d X  .( + (9X2 - 8 Y’)) 
d7 48 

whereT=a;t andk:=8a;( l -S) ,sothat$>S>O. 
The critical points of the above equations are X = Y = 0 and X z  = 2813, Y = 0. The 

first correjponds to the usual equilibrium point and is unstable with a growth rate equal 
to l /a ;JS,  whilst about the other critical point the solution is oscillating with period of 
order 

T = (2.rr)1/2/a;~3/2. (3.9) 
A phase plane analysis of equations (3.7) and (3.8) shows that all solutions correspond 
to closed orbits and hence to periodic solutions. In general the period will depend on 
the initial conditions but for those near the critical point the period is given by (3.9). 

Thus we have shown that the assumption of phase-locking of modes to the 
fundamental can explain the time-recurrent behaviour of the spatially periodic solu- 
tions of the nonlinear Schrodinger equation, at least in the ‘simple’ case. 

4. Complex recurrences 

Besides the ‘simple’ case discussed above, Yuen and Ferguson give results for situations 
which they call complex. These correspond to values of a: where more than one value 
of A,, is positive, that is more than one mode is linearly unstable. In the light of the work 
presented in this paper one expects that one must treat all the unstable modes on an 
equal footing, but allow the stable ones to phase lock to them. Mathematically this 
assumption is expressed by including on the right-hand side of (2.6) a contribution from 
all the unstable modes, and introducing equations analogous to (2.7) and (2.8) for each 
of these modes. Then, analogous to (3.7) and (3.8), one expects two new coupled 
equations for each new unstable mode with the possibility of coupling between all 
equations. In general one would no longer expect exact periodicity but some form of 
recurrent behaviour is still to be expected. The exact nature will of course depend on 
the form of the coupling between the equations. 

5. Discussion 

An analytic treatment of the time evolution of spatially periodic solutions of the 
nonlinear Schrodinger equation has been given. It is based on the assumption that the 
linearly stable modes are phase locked to the unstable ones. Solutions varying 
periodically with time are obtained in qualitative agreement with numerical simula- 
tions. 
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